Colloidal quasicrystals with 12-fold and 18-fold diffraction symmetry.
نویسندگان
چکیده
Micelles are the simplest example of self-assembly found in nature. As many other colloids, they can self-assemble in aqueous solution to form ordered periodic structures. These structures so far all exhibited classical crystallographic symmetries. Here we report that micelles in solution can self-assemble into quasicrystalline phases. We observe phases with 12-fold and 18-fold diffraction symmetry. Colloidal water-based quasicrystals are physically and chemically very simple systems. Macroscopic monodomain samples of centimeter dimension can be easily prepared. Phase transitions between the fcc phase and the two quasicrystalline phases can be easily followed in situ by time-resolved diffraction experiments. The discovery of quasicrystalline colloidal solutions advances the theoretical understanding of quasicrystals considerably, as for these systems the stability of quasicrystalline states has been theoretically predicted for the concentration and temperature range, where they are experimentally observed. Also for the use of quasicrystals in advanced materials this discovery is of particular importance, as it opens the route to quasicrystalline photonic band gap materials via established water-based colloidal self-assembly techniques.
منابع مشابه
Proliferation of anomalous symmetries in colloidal monolayers subjected to quasiperiodic light fields.
Quasicrystals provide a fascinating class of materials with intriguing properties. Despite a strong potential for numerous technical applications, the conditions under which quasicrystals form are still poorly understood. Currently, it is not clear why most quasicrystals hold 5- or 10-fold symmetry but no single example with 7- or 9-fold symmetry has ever been observed. Here we report on geomet...
متن کاملFascinating quasicrystals.
It took Dan Shechtman more than two years to get his discovery of an Al-Mn phase with icosahedral diffraction symmetry and sharp Bragg reflections published. A paradigm shift had to take place before this novel ordering state of matter - seemingly contradicting crystallographic laws - could be accepted. Today, more than 25 years later, the existence of quasicrystals is beyond doubt. However, no...
متن کاملRegular Polytopes, Root Lattices, and Quasicrystals*
The icosahedral quasicrystals of five-fold symmetry in two, three, and four dimensions are related to the corresponding regular polytopes exhibiting five-fold symmetry, namely the regular pentagon (H2 reflection group), the regular icosahedron 3,5 (H3 reflection group), and the regular four-dimensional polytope 3,3,5 (H4 reflection group). These quasicrystals exhibiting five-fold symmetry can b...
متن کاملA Fractal Fundamental Domain with 12-fold Symmetry
Square triangle tilings are relevant models for quasicrystals. We introduce a new self-similar tile-substitution which yields the well-known nonperiodic square triangle tilings of Schlottmann. It is shown that the new tilings are locally derivable from Schlottmann’s, but not vice versa, and that they are mutually locally derivable with the undecorated square triangle tilings. Furthermore, the r...
متن کاملFive-fold symmetry in crystalline quasicrystal lattices.
To demonstrate that crystallographic methods can be applied to index and interpret diffraction patterns from well-ordered quasicrystals that display non-crystallographic 5-fold symmetry, we have characterized the properties of a series of periodic two-dimensional lattices built from pentagons, called Fibonacci pentilings, which resemble aperiodic Penrose tilings. The computed diffraction patter...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 108 5 شماره
صفحات -
تاریخ انتشار 2011